Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.18.23293746

ABSTRACT

To design effective vaccines and other immune interventions against a pathogen, it is necessary to know which aspect of immunity associates with protection. We investigated whether neutralizing antibodies associate with infection clearance in long-term SARS-CoV-2 infection during HIV-mediated immunosuppression. We monitored neutralizing antibody activity against SARS-CoV-2 in five participants with advanced HIV disease and delayed control of HIV viremia. These participants had persistent SARS-CoV-2 infection ranging from 110 to 289 days which was associated with low or undetectable neutralizing antibody responses. SARS-CoV-2 clearance was associated with the emergence of neutralizing antibodies and occurred in two participants before suppression of HIV viremia, but after some CD4 T cell reconstitution. Vaccination only further increased neutralizing antibody levels in the advanced HIV disease participants who achieved HIV suppression pre-vaccination. During the prolonged SARS-CoV-2 infection we observed widespread evolution which was particularly pronounced in one Delta variant infection. This resulted in high-level escape from Delta-elicited neutralizing antibodies and a virus antigenically distinct from both ancestral SARS-CoV-2 and Omicron XBB in hamster experimental infections. The results offer new evidence that neutralizing antibodies associate with SARS-CoV-2 protection and argue that successful management of HIV may be necessary to curtail long-term infection and evolution of co-infecting pathogens.


Subject(s)
COVID-19 , Viremia , HIV Infections , Sleep Disorders, Circadian Rhythm
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.29.22274477

ABSTRACT

The SARS-CoV-2 Omicron (B.1.1.529) variant first emerged as the BA.1 sub-lineage, with extensive escape from neutralizing immunity elicited by previous infection with other variants, vaccines, or combinations of both. Two new sub-lineages, BA.4 and BA.5, are now emerging in South Africa with changes relative to BA.1, including L452R and F486V mutations in the spike receptor binding domain. We isolated live BA.4 and BA.5 viruses and tested them against neutralizing immunity elicited to BA.1 infection in participants who were Omicron/BA.1 infected but unvaccinated (n=24) and participants vaccinated with Pfizer BNT162b2 or Johnson and Johnson Ad26.CoV.2S with breakthrough Omicron/BA.1 infection (n=15). In unvaccinated individuals, FRNT50, the inverse of the dilution for 50% neutralization, declined from 275 for BA.1 to 36 for BA.4 and 37 for BA.5, a 7.6 and 7.5-fold drop, respectively. In vaccinated BA.1 breakthroughs, FRNT50 declined from 507 for BA.1 to 158 for BA.4 (3.2-fold) and 198 for BA.5 (2.6-fold). Absolute BA.4 and BA.5 neutralization levels were about 5-fold higher in this group versus unvaccinated BA.1 infected participants. The observed escape of BA.4 and BA.5 from BA.1 elicited immunity is more moderate than of BA.1 against previous immunity. However, the low absolute neutralization levels for BA.4 and BA.5, particularly in the unvaccinated group, are unlikely to protect well against symptomatic infection. This may indicate that, based on neutralization escape, BA.4 and BA.5 have potential to result in a new infection wave.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.15.22273711

ABSTRACT

Omicron (B.1.1.529) shows extensive escape from vaccine immunity, although vaccination reduces severe disease and death. Boosting with vaccines incorporating variant spike sequences could possibly broaden immunity. One approach to choose the variant may be to measure immunity elicited by vaccination combined with variant infection. Here we investigated Omicron neutralization in people infected with the Beta (B.1.351) variant and subsequently vaccinated with Pfizer BNT162b2. We observed that Beta infection alone elicited poor Omicron cross-neutralization, similar to what we previously found with BNT162b2 vaccination alone or in combination with ancestral or Delta virus infection. In contrast, Beta infection combined with BNT162b2 vaccination elicited neutralization with substantially lower Omicron escape.


Subject(s)
Sandhoff Disease , Death , Hepatitis D
SELECTION OF CITATIONS
SEARCH DETAIL